Free Download Lyrics 2024


Find Artist or Lyrics Title

Song Lyrics by Train



No Title Album
1 Whipping Boy Drops Of Jupiter
2 Drops Of Jupiter Drops Of Jupiter
3 Hopeless (drops Of Jupiter Album) Drops Of Jupiter
4 Getaway Drops Of Jupiter
5 Something More Drops Of Jupiter
6 She's On Fire Drops Of Jupiter
7 Hopeless Drops Of Jupiter
8 Respect Drops Of Jupiter
9 I Wish You Would Drops Of Jupiter
10 Mississippi Drops Of Jupiter
11 It's About You Drops Of Jupiter
12 Let It Roll Drops Of Jupiter
13 Save The Day My Private Nation
14 Calling All Angels My Private Nation
15 All American Girl My Private Nation
16 When I Look To The Sky My Private Nation
17 My Private Nation My Private Nation
18 Get To Me My Private Nation
19 Counting Airplanes My Private Nation
20 Following Rita My Private Nation
21 Your Every Color My Private Nation
22 Lincoln Avenue My Private Nation
23 I'm About To Come Alive My Private Nation
24 Days Train
25 Train Train
26 Swaying Train
27 Rat Train
28 Meet Virginia Train
29 If You Leave Train
30 Idaho Train
31 I Am Train
32 Homesick Train
33 Heavy Train
34 Free Train
35 Eggplant Train
36 Blind Train
37 Counting On You unknown
38 Hopeless unknown
39 Sweet Rain unknown
40 The Hiway (lofi) unknown

Who is Train


Trains can be sorted into types based on whether they haul passengers or freight (though mixed trains which haul both exist), by their weight (heavy rail for regular trains, light rail for lighter transit systems), by their speed, by their distance (short haul, long distance, transcontinental), and by what form of track they use. Conventional trains operate on two rails, but several other types of track systems are also in use around the world, such as monorail. Terminology The railway terminology that is used to describe a train varies between countries. The International Union of Railways seeks to provide standardised terminology across languages.[2] The Association of American Railroads provides terminology for North America.[3] The British Rail Safety and Standards Board defines a train as a "light locomotive, self-propelled rail vehicle or road-rail vehicle in rail mode."[4] A collection of passenger or freight carriages connected together (not necessarily with a locomotive) is referred to as a rake.[5] A collection of rail vehicles may also be called a consist.[6] A set of vehicles that are coupled together (such as the Pioneer Zephyr) is called a trainset.[7] The term rolling stock is used to describe any kind of railway vehicle.[8] History Main article: History of rail transport Early history Stockton and Darlington special inaugural train 1825: six wagons of coal, directors coach, then people in wagons. Trains are an evolution of wheeled wagons running on stone wagonways, the earliest of which were built by Babylon circa 2,200 BCE.[9] Starting in the 1500s, wagonways were introduced to haul material from mines; from the 1790s, stronger iron rails were introduced.[9] Following early developments in the second half of the 1700s, in 1804 a steam locomotive built by British inventor Richard Trevithick powered the first ever steam train.[10] Outside of coal mines, where fuel was readily available, steam locomotives remained untried until the opening of the Stockton and Darlington Railway in 1825. British engineer George Stephenson ran a steam locomotive named Locomotion No. 1 on this 40-kilometer (25-mile) long line, hauling over 400 passengers at up to 13 kilometers per hour (8 mph). The success of this locomotive, and Stephenson's Rocket in 1829, convinced many of the value in steam locomotives, and within a decade the stock market bubble known as "Railway Mania" started across the United Kingdom.[11] News of the success of steam locomotives quickly reached the United States, where the first steam railroad opened in 1829.[12] American railroad pioneers soon started manufacturing their own locomotives, designed to handle the sharper curves and rougher track typical of the country's railroads.[13]The Union Pacific Big Boy locomotives represented the pinnacle of steam locomotive technology and power.The other nations of Europe also took note of British railroad developments, and most countries on the continent constructed and opened their first railroads in the 1830s and 1840s, following the first run of a steam train in France in late 1829.[14] In the 1850s, trains continued to expand across Europe, with many influenced by or purchases of American locomotive designs.[14] Other European countries pursued their own distinct designs. Around the world, steam locomotives grew larger and more powerful throughout the rest of the century as technology advanced.[15] Trains first entered service in South America, Africa, and Asia through construction by imperial powers, which starting in the 1840s built railroads to solidify control of their colonies and transport cargo for export.[16] In Japan, which was never colonized, railroads first arrived in the early 1870s. By 1900, railroads were operating on every continent besides uninhabited Antarctica.[17] New technologies Electric train on Djursholmsbanan in Stockholm in the 1890s. Even as steam locomotive technology continued to improve, inventors in Germany started work on alternative methods for powering trains. Werner von Siemens built the first train powered by electricity in 1879, and went on to pioneer electric trams.[15] Another German inventor, Rudolf Diesel, constructed the first diesel engine in the 1890s, though the potential of his invention to power trains was not realized until decades later.[15] Between 1897 and 1903, tests of experimental electric locomotives on the Royal Prussian Military Railway in Germany demonstrated they were viable, setting speed records in excess of 160 kilometers per hour (100 mph).[18]The EMD FT set the stage for diesel locomotives to take over from steam.Early gas powered "doodlebug" self-propelled railcars entered service on railroads in the first decade of the 1900s.[19] Experimentation with diesel and gas power continued, culminating in the German "Flying Hamburger" in 1933, and the influential American EMD FT in 1939.[20] These successful diesel locomotives showed that diesel power was superior to steam, due to lower costs, ease of maintenance, and better reliability.[21] Meanwhile, Italy developed an extensive network of electric trains during the first decades of the 20th century, driven by that country's lack of significant coal reserves.[18] Dieselization and increased competition World War II brought great destruction to existing railroads across Europe, Asia, and Africa. Following the war's conclusion in 1945, nations which had suffered extensive damage to their railroad networks took the opportunity provided by Marshall Plan funds (or economic assistance from the USSR and Comecon, for nations behind the Iron Curtain) and advances in technology to convert their trains to diesel or electric power.[22] France, Russia, Switzerland, and Japan were leaders in adopting widespread electrified railroads, while other nations focused primarily on dieselization.[23] By 1980, the majority of the world's steam locomotives had been retired, though they continued to be used in parts of Africa and Asia, along with a few holdouts in Europe and South America.[24] China was the last country to fully dieselize, due to its abundant coal reserves; steam locomotives were used to haul mainline trains as late as 2005 in Inner Mongolia.[25] Trains began to face strong competition from automobiles and freight trucks in the 1930s, which greatly intensified following World War II.[26] After the war, air transport also became a significant competitor for passenger trains. Large amounts of traffic shifted to these new forms of transportation, resulting in a widespread decline in train service, both freight and passenger.[23] A new development in the 1960s was high-speed rail, which runs on dedicated rights of way and travels at speeds of 240 kilometers per hour (150 mph) or greater. The first high-speed rail service was the Japanese Shinkansen, which entered service in 1964.[27] In the following decades, high speed rail networks were developed across much of Europe and Eastern Asia, providing fast and reliable service competitive with automobiles and airplanes.[27] The first high-speed train in the Americas was Amtrak's Acela in the United States, which entered service in 2000.[28] China operates an extensive high speed rail network. To the present day Towards the end of the 20th century, increased awareness of the benefits of trains for transport led to a revival in their use and importance. Freight trains are significantly more efficient than trucks, while also emitting far fewer greenhouse gas emissions per ton-mile; passenger trains are also far more energy efficient than other modes of transport. According to the International Energy Agency, "On average, rail requires 12 times less energy and emits 7–11 times less GHGs per passenger-km travelled than private vehicles and airplanes, making it the most efficient mode of motorised passenger transport. Aside from shipping, freight rail is the most energy-efficient and least carbon-intensive way to transport goods."[29] As such, rail transport is considered an important part of achieving sustainable energy.[30] Intermodal freight trains, carrying double-stack shipping containers, have since the 1970s generated significant business for railroads and gained market share from trucks.[31] Increased use of commuter rail has also been promoted as a means of fighting traffic congestion on highways in urban areas.[32][better source needed] Components Bogies US-style railroad truck (bogie) with journal bearings Main article: Bogie Bogies, also known in North America as trucks,[citation needed] support the wheels and axles of trains. Trucks range from just one axle to as many as four or more. Two-axle trucks are in the widest use worldwide, as they are better able to handle curves and support heavy loads than single axle trucks.[33][failed verification] Couplers Main article: Railway coupling Train vehicles are linked to one another by various systems of coupling. In much of Europe, India, and South America, trains primarily use buffers and chain couplers. In the rest of the world, Janney couplers are the most popular, with a few local variations persisting (such as Wilson couplers in the former Soviet Union). On multiple units all over the world, Scharfenberg couplers are common.[34] Brakes Main article: Railway air brake Because trains are heavy, powerful brakes are needed to slow or stop trains, and because steel wheels on steel rails have relatively low friction, brakes must be distributed among as many wheels as possible.[failed verification] Early trains could only be stopped by manually applied hand brakes, requiring workers to ride on top of the cars and apply the brakes when the train went downhill.[failed verification] Hand brakes are still used to park cars and locomotives, but the predominant braking system for trains globally is air brakes, invented in 1869 by George Westinghouse.[failed verification] Air brakes are applied at once to the entire train using air hoses.[35] Warning devices This cab car includes a horn (top), a bell (top right), headlights (above the door), classification lights (red lights on side), and ditch lights (white lights on side). For safety and communication, trains are equipped with bells, horns, and lights[failed verification].[36][37][globalize] Steam locomotives typically use steam whistles rather than horns.[failed verification] Other types of lights may be installed on locomotives and cars, such as classification lights, Mars Lights, and ditch lights.[38][globalize][failed verification] Cabs Locomotives are in most cases[failed verification] equipped with cabs, also known as driving compartments, where a train driver controls the train's operation.[39][globalize][better source needed] They may also be installed on unpowered train cars known as cab or control cars, to allow for a train to operate with the locomotive at the rear.[40][better source needed] Operations Main article: Rail transport operations Scheduling and dispatching To prevent collisions or other accidents, trains are often scheduled, and almost always are under the control of train dispatchers.[41] Historically, trains operated based on timetables; most trains (including nearly all passenger trains), continue to operate based on fixed schedules, though freight trains may instead run on an as-needed basis, or when enough freight cars are available to justify running a train.[42] Maintenance A number of maintenance vehicles at work on Metro-North Railroad Simple repairs may be done while a train is parked on the tracks, but more extensive repairs will be done at a motive power depot.[43] Similar facilities exist for repairing damaged or defective train cars.[44] Maintenance of way trains are used to build and repair railroad tracks and other equipment.[45] Crew Train drivers, also known as engineers, are responsible for operating trains.[46] Conductors are in charge of trains and their cargo, and help passengers on passenger trains.[46] Brakeman, also known as trainmen, were historically responsible for manually applying brakes, though the term is used today to refer to crew members who perform tasks such as operating switches, coupling and uncoupling train cars, and setting handbrakes on equipment.[46] Steam locomotives require a fireman who is responsible for fueling and regulating the locomotive's fire and boiler.[46] On passenger trains, other crew members assist passengers, such as chefs to prepare food, and service attendants to provide food and drinks to passengers. Other passenger train specific duties include passenger car attendants, who assist passengers with boarding and alighting from trains, answer questions, and keep train cars clean, and sleeping car attendants, who perform similar duties in sleeping cars.[46] Some trains can operate with automatic train operation without a driver directly present.[47] Gauge A narrow gauge train in Austria Around the world, various track gauges are in use for trains. In most cases, trains can only operate on tracks that are of the same gauge; where different gauge trains meet, it is known as a break of gauge. Standard gauge, defined as 1,435 mm (4 ft 8.5 in) between the rails, is the most common gauge worldwide, though both broad-gauge and narrow-gauge trains are also in use.[48] Trains also need to fit within the loading gauge profile to avoid fouling bridges and lineside infrastructure with this being a potential limiting factor on loads such as intermodal container types that may be carried.[49] Safety Most derailments, such as this one in Switzerland, are minor and do not cause injuries or damage. Trains carrying hazardous materials display information identifying their cargo and hazards. This tank car carrying chlorine displays, among other markings, a U.S. DOT placard showing a UN number that identifies the hazardous substance.[50] Train accidents sometimes occur, including derailments (when a train leaves the tracks) and train wrecks (collisions between trains). Accidents were more common in the early days of trains, when railway signal systems, centralized traffic control, and failsafe systems to prevent collisions were primitive or did not yet exist.[51] To prevent accidents, systems such as automatic train stop are used; these are failsafe systems that apply the brakes on a train if it passes a red signal and enters an occupied block, or if any of the train's equipment malfunctions.[52][obsolete source] More advanced safety systems, such as positive train control, can also automatically regulate train speed, preventing derailments from entering curves or switches too fast.[53] Modern trains have a very good safety record overall, comparable with air travel.[54] In the United States between 2000 and 2009, train travel averaged 0.43 deaths per billion passenger miles traveled. While this was higher than that of air travel at 0.07 deaths per billion passenger miles, it was also far below the 7.28 deaths per billion passenger miles of car travel.[55] In the 21st century, several derailments of oil trains caused fatalities, most notably the Canadian Lac-Mégantic rail disaster in 2013 which killed 47 people and leveled much of the town of Lac-Mégantic.[56] The vast majority of train-related fatalities, over 90 percent, are due to trespassing on railroad tracks, or collisions with road vehicles at level crossings.[57] Organizations such as Operation Lifesaver have been formed to improve safety awareness at railroad crossings, and governments have also launched ad campaigns. Trains cannot stop quickly when at speed; even an emergency brake application may still require more than a mile of stopping distance. As such, emphasis is on educating motorists to yield to trains at crossings and avoid trespassing.[58] Motive power Main article: LocomotiveGarratt locomotives in Zimbabwe Before steam The first trains were rope-hauled, gravity powered or pulled by horses.[9] Steam Steam locomotives work by burning coal, wood or oil fuel in a boiler to heat water into steam, which powers the locomotive's pistons which are in turn connected to the wheels.[59] In the mid 20th century, most steam locomotives were replaced by diesel or electric locomotives, which were cheaper, cleaner, and more reliable.[60] Steam locomotives are still used in heritage railways operated in many countries for the leisure and enthusiast market.[61][globalize] Diesel Diesel locomotives are powered with a diesel engine, which generates electricity to drive traction motors. This is known as a diesel–electric transmission, and is used on most larger diesels.[62] Diesel power replaced steam for a variety of reasons: diesel locomotives were less complex, far more reliable, cheaper, cleaner, easier to maintain, and more fuel efficient.[60] Electric Swiss Electric locomotive at Brig, SwitzerlandElectric trains receive their current via overhead lines or through a third rail electric system, which is then used to power traction motors that drive the wheels.[63] Electric traction offers a lower cost per mile of train operation but at a higher initial cost, which can only be justified on high traffic lines. Even though the cost per mile of construction is much higher, electric traction is cheaper to operate thanks to lower maintenance and purchase costs for locomotives and equipment.[63] Compared to diesel locomotives, electric locomotives produce no direct emissions and accelerate much faster, making them better suited to passenger service, especially underground.[63][64] Other types A gas turbine locomotive operated by the Union Pacific Railroad See also: Alternative fuel locomotive Various other types of train propulsion have been tried, some more successful than others. In the mid 1900s, gas turbine locomotives were developed and successfully used, though most were retired due to high fuel costs and poor reliability.[65] In the 21st century, alternative fuels for locomotives are under development, due to increasing costs for diesel and a desire to reduce greenhouse gas emissions from trains. Examples include hydrail (trains powered by hydrogen fuel cells) and the use of compressed or liquefied natural gas.[66][67] Train cars Main article: Railroad car Various types of railroad cars in a classification yard in the United States Train cars, also known as wagons, are unpowered rail vehicles which are typically pulled by locomotives. Many different types exist, specialized to handle various types of cargo. Some common types include boxcars (also known as covered goods wagons) that carry a wide variety of cargo, flatcars (also known as flat wagons) which have flat tops to hold cargo, hopper cars which carry bulk commodities, and tank cars which carry liquids and gases. Examples of more specialized types of train cars include bottle cars which hold molten steel,[68] Schnabel cars which handle very heavy loads, and refrigerator cars which carry perishable goods.[69][70] Early train cars were small and light, much like early locomotives, but over time they have become larger as locomotives have become more powerful.[68] Passenger trains Main article: Passenger train Second-class compartment of a China Railways CRH1A-A train A passenger train is used to transport people along a railroad line. These trains may consist of unpowered passenger railroad cars (also known as coaches or carriages) hauled by one or more locomotives, or may be self-propelled; self propelled passenger trains are known as multiple units or railcars. Passenger trains travel between stations or depots, where passengers may board and disembark. In most cases, passenger trains operate on a fixed schedule and have priority over freight trains.[71] Passenger trains can be divided into short and long distance services. Long distance trains Main article: Inter-city rail Long distance passenger trains travel over hundreds or even thousands of miles between cities. The longest passenger train service in the world is Russia's Trans-Siberian Railway between Moscow and Vladivostok, a distance of 9,289 kilometers (5,772 mi).[72] In general, long distance trains may take days to complete their journeys, and stop at dozens of stations along their routes. For many rural communities, they are the only form of public transportation available.[73] Short distance trains Short distance or regional passenger trains have travel times measured in hours or even minutes, as opposed to days. They run more frequently than long distance trains, and are often used by commuters. Short distance passenger trains specifically designed for commuters are known as commuter rail.[74] High speed trains Main article: High-speed rail The Japanese 0 Series Shinkansen pioneered high speed rail service.High speed trains are designed to be much faster than conventional trains, and typically run on their own separate tracks than other, slower trains. The first high speed train was the Japanese Shinkansen, which opened in 1964.[75] In the 21st century, services such as the French TGV and German Intercity Express are competitive with airplanes in travel time over short to medium distances.[76] A subset of high speed trains are higher speed trains, which bridge the gap between conventional and high speed trains, and travel at speeds between the two. Examples include the Northeast Regional in the United States, the Gatimaan Express in India, and the KTM ETS in Malaysia. Rapid transit trains A number of types of trains are used to provide rapid transit to urban areas. These are distinct from traditional passenger trains in that they operate more frequently, typically do not share tracks with freight trains, and cover relatively short distances. Many different kinds of systems are in use globally.[77] Rapid transit trains that operate in tunnels below ground are known as subways, undergrounds, or metros. Elevated railways operate on viaducts or bridges above the ground, often on top of city streets. "Metro" may also refer to rapid transit that operates at ground level. In many systems, two or even all three of these types may exist on different portions of a network.[citation needed] The New Orleans Streetcar System is one of the oldest in the world. Trams Main article: Tram Trams, also known in North America as streetcars, typically operate on or parallel to streets in cities, with frequent stops and a high frequency of service.[78] Light rail Main article: Light rail Škoda Artic light rail train near the cathedral in Tampere, Finland Light rail is a catchall term for a variety of systems, which may include characteristics of trams, heavier passenger trains, and rapid transit systems.[78] Specialized trains There are a number of specialized trains which differ from the traditional definition of a train as a set of vehicles which travels on two rails. Monorail A Tokyo Monorail train Main article: Monorail Monorails were developed to meet medium-demand traffic in urban transit, and consist of a train running on a single rail, typically elevated. Monorails represent a small proportion of the train systems in use worldwide. Almost all monorail trains use linear induction motors[failed verification][79][non-primary source needed][80][unreliable source?] Maglev Main article: Maglev Maglev technology uses magnets to levitate the train above the track, reducing friction and allowing higher speeds.[81] The first commercial maglev train was an airport shuttle introduced in 1984 at Birmingham Airport in England.[82][failed verification] The Shanghai maglev train, opened in 2002, is the fastest commercial train service of any kind, operating at speeds of up to 431 km/h (268 mph).[83] Japan's L0 Series maglev holds the record for the world's fastest train ever, with a top speed of 603.0 kilometers per hour (374.7 mph).[84] Maglev has not yet been used for inter-city mass transit routes, with only a few examples in use worldwide as of 2019[update].[83] Mine trains Main article: Mine railway Mine trains are operated in large mines and carry both workers and goods. They are usually powered by electricity, to prevent emissions which would pose a health risk to workers underground.[85][globalize] A preserved armored train Militarized trains Main articles: Armoured train and Railway gun While they have long been important in transporting troops and military equipment, trains have occasionally been used for direct combat. Armored trains have been used in a number of conflicts, as have railroad based artillery systems.[86][87] Railcar-launched ICBM systems have also been used by nuclear weapon states.[88] Rack railway Main article: Rack railway For climbing steep slopes, specialized rack railroads are used. In order to avoid slipping, a rack and pinion system is used, with a toothed rail placed between the two regular rails, which meshes with a drive gear under the locomotive.[89] Funicular Main article: Funicular Funiculars are also used to climb steep slopes, but instead of a rack use a rope, which is attached to two cars and a pulley.[90] The two funicular cars travel up and down the slope on parallel sets of rails when the pulley is rotated. This design makes funiculars an efficient means of moving people and cargo up and down slopes.[91] The earliest funicular railroad, the Reisszug, opened around 1500.[91] Rubber-tired train
Data taken from WikiPedia.


Random Albums and the Artists list from our database.



Hanson - Underneath OV7 - CD00 Coup, The - Genocide & Juice Amorphis - Tales From The 1000 Lakes George Strait - unknown Aerosmith - Box Of Fire Fall, The - The Light User Syndrome REM - Document Ryan Adams - Rock N Roll Pharoahe Monch - Internal Affairs Elvis Presley - Aloha From Hawaii-25th Anniver Snoop Dogg - No Limit: Top Dogg DMX - Cradle to the Grave Soundtrack Accept - Accept Billy Bragg - Mermaid Avenue Die Trying - Die Trying Waterboys, The - Whole Of The Moon Missy Elliott - Da Real World Blues Traveler - unknown A-Camp - A-Camp